3.1049 \(\int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=219 \[ -\frac{2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}+\frac{2 \left (2 a^2 C-a b B+A b^2-b^2 C\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{b^2 d \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 (b B-2 a C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{b^2 d \sqrt{a+b \cos (c+d x)}} \]

[Out]

(2*(A*b^2 - a*b*B + 2*a^2*C - b^2*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(b^2*(a^2
 - b^2)*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*(b*B - 2*a*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[
(c + d*x)/2, (2*b)/(a + b)])/(b^2*d*Sqrt[a + b*Cos[c + d*x]]) - (2*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(b*(a
^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.289416, antiderivative size = 219, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {3021, 2752, 2663, 2661, 2655, 2653} \[ -\frac{2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}+\frac{2 \left (2 a^2 C-a b B+A b^2-b^2 C\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{b^2 d \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 (b B-2 a C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{b^2 d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(2*(A*b^2 - a*b*B + 2*a^2*C - b^2*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(b^2*(a^2
 - b^2)*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*(b*B - 2*a*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[
(c + d*x)/2, (2*b)/(a + b)])/(b^2*d*Sqrt[a + b*Cos[c + d*x]]) - (2*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(b*(a
^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}-\frac{2 \int \frac{\frac{1}{2} b (b B-a (A+C))-\frac{1}{2} \left (A b^2-a b B+2 a^2 C-b^2 C\right ) \cos (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{b \left (a^2-b^2\right )}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{(b B-2 a C) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx}{b^2}+\frac{\left (A b^2-a b B+2 a^2 C-b^2 C\right ) \int \sqrt{a+b \cos (c+d x)} \, dx}{b^2 \left (a^2-b^2\right )}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{\left (\left (A b^2-a b B+2 a^2 C-b^2 C\right ) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{b^2 \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{\left ((b B-2 a C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{b^2 \sqrt{a+b \cos (c+d x)}}\\ &=\frac{2 \left (A b^2-a b B+2 a^2 C-b^2 C\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{b^2 \left (a^2-b^2\right ) d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 (b B-2 a C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{b^2 d \sqrt{a+b \cos (c+d x)}}-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.947786, size = 182, normalized size = 0.83 \[ -\frac{2 \left (-(a+b) \left (2 a^2 C-a b B+A b^2-b^2 C\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )+\left (a^2-b^2\right ) (2 a C-b B) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )+b \sin (c+d x) \left (a (a C-b B)+A b^2\right )\right )}{b^2 d (a-b) (a+b) \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(-2*(-((a + b)*(A*b^2 - a*b*B + 2*a^2*C - b^2*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*
b)/(a + b)]) + (a^2 - b^2)*(-(b*B) + 2*a*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a
 + b)] + b*(A*b^2 + a*(-(b*B) + a*C))*Sin[c + d*x]))/((a - b)*b^2*(a + b)*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 2.236, size = 522, normalized size = 2.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b^2/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2
*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(b*B*Ell
ipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-2*C*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+C*Ellipti
cE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-C*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b)+2*(A*b^2-B*a
*b+C*a^2)/b^2/sin(1/2*d*x+1/2*c)^2/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)/(a^2-b^2)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*
sin(1/2*d*x+1/2*c)^2)^(1/2)*((sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*
EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)
^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b+2*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/
2*c)^2))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(b*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x
+ c) + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(b*cos(d*x + c) + a)^(3/2), x)